จำนวนจริง
คือจำนวนที่สามารถจับคู่หนึ่งต่อหนึ่งกับจุดบนเส้นตรงที่มีความยาวไม่สิ้นสุด
(เส้นจำนวน) ได้ คำว่า จำนวนจริง นั้นบัญญัติขึ้นเพื่อแยกเซตนี้ออกจากจำนวนจินตภาพ
จำนวนจริงเป็นศูนย์กลางการศึกษาในสาขาคณิตวิเคราะห์จำนวนจริง (real analysis)
มีหลักเกณฑ์ในการแบ่งจำนวนจริงอยู่หลายเกณฑ์ เช่น จำนวนตรรกยะ หรือ
จำนวนอตรรกยะ; จำนวนพีชคณิต (algebraic number) หรือ จำนวนอดิศัย; และ จำนวนบวก จำนวนลบ หรือ
ศูนย์ จำนวนจริงแทนปริมาณที่ต่อเนื่องกัน โดยทฤษฎีอาจแทนได้ด้วยทศนิยมไม่รู้จบ
และมักจะเขียนในรูปเช่น 324.823211247… จุดสามจุด
ระบุว่ายังมีหลักต่อๆไปอีก ไม่ว่าจะยาวเพียงใดก็ตาม
การวัดในวิทยาศาสตร์กายภาพเกือบทั้งหมดจะเป็นการประมาณค่าสู่จำนวนจริง
การเขียนในรูปทศนิยม
(ซึ่งเป็นจำนวนตรรกยะที่สามารถเขียนเป็นอัตราส่วนที่มีตัวส่วนชัดเจน) ไม่เพียงแต่ทำให้กระชับ
แต่ยังทำให้สามารถเข้าใจถึงจำนวนจริงที่แทนได้ในระดับหนึ่งอีกด้วย
จำนวนจริงจำนวนหนึ่งจะกล่าวได้ว่าเป็นจำนวนที่คำนวณได้ (computable) ถ้ามีขั้นตอนวิธีที่สามารถให้ได้ตัวเลขแทนออกมา
เนื่องจากมีจำนวนขั้นตอนวิธีนับได้ (countably infinite) แต่มีจำนวนของจำนวนจริงนับไม่ได้
จำนวนจริงส่วนมากจึงไม่เป็นจำนวนที่คำนวณได้ กลุ่มลัทธิเค้าโครง (constructivists) ยอมรับการมีตัวตนของจำนวนที่คำนวณได้เท่านั้น
เซตของจำนวนที่ให้นิยามได้นั้นใหญ่กว่า แต่ก็ยังนับได้
ส่วนมากคอมพิวเตอร์เพียงประมาณค่าของจำนวนจริงเท่านั้น
โดยทั่วไปแล้ว
คอมพิวเตอร์สามารถแทนค่าจำนวนตรรกยะเพียงกลุ่มหนึ่งได้อย่างแม่นยำโดยใช้ตัวเลขจุดลอยตัวหรือตัวเลขจุดตรึง
จำนวนตรรกยะเหล่านี้ใช้เป็นค่าประมาณของจำนวนจริงข้างเคียงอื่นๆ เลขคณิตกำหนดความเที่ยงได้
(arbitrary-precision arithmetic) เป็นขั้นตอนในการแทนจำนวนตรรกยะโดยจำกัดเพียงหน่วยความจำที่มี
แต่โดยทั่วไปจะใช้จำนวนของบิตความละเอียดคงที่กำหนดโดยขนาดของรีจิสเตอร์หน่วยประมวลผล
(processor register) นอกเหนือจากจำนวนตรรกยะเหล่านี้
ระบบพีชคณิตคอมพิวเตอร์สามารถจัดการจำนวนอตรรกยะจำนวนมาก (นับได้)
อย่างแม่นยำโดยบันทึกรูปแบบเชิงพีชคณิต (เช่น "sqrt(2)")
แทนค่าประมาณตรรกยะ
นักคณิตศาสตร์ใช้สัญลักษณ์ R (หรือ R
- อักษร R ในแบบอักษร blackboard
bold) แทนเซตของจำนวนจริง สัญกรณ์ Rn แทนปริภูมิ n มิติของจำนวนจริง เช่น
สมาชิกตัวหนึ่งจาก R3
ประกอบด้วยจำนวนจริงสามจำนวนและระบุตำแหน่งบนปริภูมิสามมิติ